Double nanohole optical trapping: dynamics and protein-antibody co-trapping.
نویسندگان
چکیده
A double nanohole in a metal film can optically trap nanoparticles such as polystyrene/silica spheres, encapsulated quantum dots and up-converting nanoparticles. Here we study the dynamics of trapped particles, showing a skewed distribution and low roll-off frequency that are indicative of Kramers-hopping at the nanoscale. Numerical simulations of trapped particles show a double-well potential normally found in Kramers-hopping systems, as well as providing quantitative agreement with the overall trapping potential. In addition, we demonstrate co-trapping of bovine serum albumin (BSA) with anti-BSA by sequential delivery in a microfluidic channel. This co-trapping opens up exciting possibilities for the study of protein interactions at the single particle level.
منابع مشابه
Optical trapping of nanoparticles.
Optical trapping is a technique for immobilizing and manipulating small objects in a gentle way using light, and it has been widely applied in trapping and manipulating small biological particles. Ashkin and co-workers first demonstrated optical tweezers using a single focused beam. The single beam trap can be described accurately using the perturbative gradient force formulation in the case of...
متن کاملSensing nanoparticles using a double nanohole optical trap.
We use a double nanohole (DNH) optical trap to quantify the size and concentration of nanoparticles in solution. The time to trap shows a linear dependence with nanosphere size and a -2/3 power dependence with nanosphere concentration, which is in agreement with simple microfluidic considerations. The DNH approach has size-specificity on the order of a few nanometers, which was used to selectiv...
متن کاملFlow-dependent double-nanohole optical trapping of 20 nm polystyrene nanospheres
We study the influence of fluid flow on the ability to trap optically a 20 nm polystyrene particle from a stationary microfluidic environment and then hold it against flow. Increased laser power is required to hold nanoparticles as the flow rate is increased, with an empirical linear dependence of 1 μl/(min×mW). This is promising for the delivery of additional nanoparticles to interact with a t...
متن کاملTrapping of a single DNA molecule using nanoplasmonic structures for biosensor applications
Conventional optical trapping using a tightly focused beam is not suitable for trapping particles that are smaller than the diffraction limit because of the increasing need of the incident laser power that could produce permanent thermal damages. One of the current solutions to this problem is to intensify the local field enhancement by using nanoplasmonic structures without increasing the lase...
متن کاملIntegration of Light Trapping Silver Nanostructures in Hydrogenated Microcrystalline Silicon Solar Cells by Transfer Printing.
One of the potential applications of metal nanostructures is light trapping in solar cells, where unique optical properties of nanosized metals, commonly known as plasmonic effects, play an important role. Research in this field has, however, been impeded owing to the difficulty of fabricating devices containing the desired functional metal nanostructures. In order to provide a viable strategy ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lab on a chip
دوره 13 13 شماره
صفحات -
تاریخ انتشار 2013